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ABSTRACT

Image classification can facilitate semantic retrieval and browsing of large-scale image databases. 

Existing approaches are usually based on extracting local or global low-level features such as 

color, edge, and texture from images.  In this paper, we propose an image categorization method 

that characterizes the respective scene structures in images. 2D Spatial Frequency Map of an 

image, as well as the respective projection vector representations and principal component 

representations, are used to characterize the spatial structure of the image. Based on multiple 

similarity scores, we use a spectral clustering method and a maximal-spanning-tree-spectral-

clustering method to generate image categories.
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1. INTRODUCTION 

Automatic image categorization can facilitate many visual processing tasks such as scene 

recognition and large-scale image database retrieval/browsing. Most existing methods tackle this 

problem by clustering images based on various local or global low-level visual features such as 

edge, color and texture [5][11][15]. Some techniques such as self-organization map, hierarchical 

classification, and Bayesian networks have been proposed to correlate low-level features with 

higher-level semantic meaning of images.  

Despite their successes, most existing methods focus on two-class problems (e.g. indoor/ 

outdoor, or city/landscape). In addition, usually they do not consider specifically the global spatial 

structure information embedded in the images. For instance, images of lakes in the long distance 

may contain several horizontally distributed smooth areas, corresponding to the sky at the top, 
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buildings or forests in the middle, and the lake at the bottom, respectively. Usually, images of 

closely viewed trees or flowers are highly textured; they exhibit no bias to a specific orientation. 

Images of city streets acquired in middle distances tend to contain highly textured areas 

(corresponding to trees, buildings, etc.) and smooth areas at the top (corresponding to the sky) and 

the bottom (corresponding to the ground). It has been shown that different categories of scenes 

(such as forest, mountain, city, beach, etc) tend to have different statistical properties in their 

spatial structures [10]. In addition, without detailed local information of objects, human subjects 

are able to identify scenes as long as the global relations between large-scale structures in the 

scenes are preserved [8]. These evidences indicate that spatial structures of scenes are probably 

used by humans to identify scene categories. 

We propose an approach to categorize images into multiple classes by capturing their spatial 

structure characteristics. Instead of representing each image by a combination of widely used 

features such as color histogram, moments, edge direction, MSAR texture, etc., we derive the 2D 

Spatial Frequency Map (SFM), which characterizes the spatial structure of each image. To 

facilitate clustering, the dimensionality of the 2D SFM is reduced by orientation projection and 

principal component analysis. We use two spectral clustering methods and several similarity scores 

to study the effect of the SFMs.  

The paper is organized as follows. The 2D spatial frequency map is introduced in §2. Low 

dimensional representations of SFM are discussed in §3. Clustering schemes are addressed in §4. 

Experimental results are discussed in §5. 

2. SPATIAL FREQUENCY MAP 

       A scene image usually consists of multiple surfaces of different depths. The specific structure 

of the scene is reflected by the depth of these surfaces and their relative spatial relationships. Since 

spatial frequency analysis of the image provides depth information of the scene [4], we propose 

using the spatial distributions of local spatial frequency to characterize the scene structure that the 

image underlies. 

We first divide each image (M N pixels) into a set of square patches. Each patch has NP NP

pixels (in our setting, 0.05 min(M,N)<NP<0.5 min(M,N)). The distances between the centers of 

neighboring patches along horizontal and vertical directions are all NR pixels. The overlapping of 

patches can be controlled by the parameters NP and NR. We then compute the 2D Fourier power 

spectrum of each patch. Boundary effects are reduced by applying a Kaiser-Bessel window [3], 

which has the maximum value at the center and gradually decreases to zero towards the boundary. 

Since it is isotropic, no orientation bias is introduced. The Fourier transform of each patch, FP(u,v),

is given by: 
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where x and y are the horizontal and vertical coordinates of the image pixels, respectively; u and v

are corresponding spatial frequency coordinates; Imn(x,y) is the image patch centered on (m,n);

w(x,y) is the Kaiser-Bessel window function.

For each image patch, the power spectrum SP(u,v) is given by, 
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The spatial frequency coordinates (u,v) can be represented by polar coordinates (f, ), u =

fcos , v = fsin , where f is the spatial frequency and  the orientation. For a specific spatial 

frequency, by averaging the 2D power spectrum S(f, ) across all orientations, we obtain a 1D 

power spectrum Q(f) as a function of spatial frequency f, i.e., 
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where N  is the number of orientations.  

Figure 1. Spatial frequency maps (SFMs) and their projections. Upper row: original images. Each image is 

of 768 512 pixels. Second row: the corresponding SFMs. Each pixel in the SFM corresponds to a 21 21 

patch in the original image. The distances between the centers of neighboring patches along horizontal and 

vertical directions are 3 pixels. The  values (see text) in the red, green, and blue channels are combined to a 

single  value, indicated by the intensity of the pixels in the second row. Third row: SFM_H (i.e. projecting 

SFMs along the horizontal direction). Bottom row: SFM_V (i.e. projecting SFMs along the vertical 

direction). 

According to the power law, Fourier power decreases with the increase of the spatial 

frequency [12], i.e., Q(f) ~ Af  (where A is a constant determining the overall image contrast). 

Usually the function Q(f) becomes a decreasing line (slope is ) when plotted in log-log scale. The 

value of  reflects how the power is distributed across the range of the spatial frequency. When 

is small, the power decreases slowly as spatial frequency increases, thus an image patch contains a 

wide range of frequency components; when  is large, the power decreases quickly as spatial 

frequency increases, thus an image patch mainly contains low frequency information. Therefore, 
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we can use the parameter  to characterize the spatial frequency properties of each image patch. 

We estimate  via linear regression of Q(f) plotted in the log-log scale.

Suppose an image is divided into R T patches, we obtain an R T matrix. Each element of the 

matrix is the  value of the corresponding patch. We call this matrix the 2D Spatial Frequency Map 

(SFM) of this image. SFM describes how the power is distributed across different spatial 

frequencies in local areas of the image. Some SFM examples are given in Figure 1. 

3. LOW DIMENSIONAL REPRESENTATION 

OF THE SPATIAL FREQUENCY MAP 

To classify each image into different categories, its corresponding SFM is regarded as a high-

dimensional data point. The dimensionality equals the number of pixels in the SFM. For example, 

for a 150 200 image, if we divide it into square patches of 21 21 pixels and let the inter-patch 

distances be 3 pixels, then the dimension of SFM would be 2580 (i.e. 43 60). Since it is often 

difficult to cluster data points distributed sparsely in the high-dimensional space, we use two 

approaches, i.e. projection vector representation and principal component decomposition, to reduce 

the dimensionality of the SFM. 

3.1 Projection Vector Representations 

A simple way to reduce the dimensionality of SFM is to project the SFM along horizontal and 

vertical directions. Denote the element in the ith row and jth column of the SFM (with R T

elements) as ij. By projecting the SFM along the horizontal direction, we obtain a vector zh = 

[b1,…,bi,…,bR]', where bi = j ij/T. Similarly, by projecting the SFM along the vertical direction, 

we obtain a vector zv = [c1,…,cj,…,cT]', where cj = i ij/R. The horizontally and vertically projected 

vector can be concatenated into a long vector z = [zh ; zv]. We denote the projection vectors of SFM 

along the horizontal and vertical directions as SFM_H and SFM_V, respectively. The concatenated 

vector is denoted as SFM_HV. The two lower rows of Figure 1 show examples of the SFM_H and 

SFM_V.

3.2 Principle Component Representations 

The second approach we use to reduce the dimensionality of SFM is the principal component 

analysis (PCA). The main idea is to represent each SFM as the linear combination of a small 

number of principal components.  

Suppose we have L images, and the SFM of each image contains G pixels (where G = R T).

We combine all the SFMs and obtained an L G matrix D, where each row corresponds to the SFM 

of an image. To compute the principal components of the SFMs, we first calculate the covariance 

matrix of the D, i.e. C = cov(D), which is a G G symmetric real matrix. It can be proved that C has 

G real eigenvalue/eigenvector pairs: C V = V , where each column of V is an eigenvector, =

diag( 1,…, i,…, G) and i is the ith eigenvalue. Then, we select the K eigenvectors (principal 

components) corresponding to the K-largest eigenvalues. These K principal components of the 

SFMs constitute a G K matrix, denoted as EK.

Next, each G-dimensional SFM point is projected onto the K-dimensional space of the K

principal components. This is achieved by multiplying D and EK, i.e., DK = D EK. The resultant 

L K matrix DK represents L low-dimensional SFMs. Because K is usually much smaller than G, DK
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is a much more compact representation of the original data. It is likely that the clusters in this low 

dimensional space become more distinguishable than in the original high dimensional space.  

Because the variances of various dimensions can differ significantly, different dimensions will 

play significantly different roles in SFM-comparison if their effect is not normalized. For example, 

if the first eigenvalue 1 is 10 times of the second eigenvalue 2, the difference along the first 

eigenvector direction is about 10 times of that along the second eigenvector direction. This makes 

some common similarity measures (e.g. L1 or L2 similarity, or the correlation coefficient) 

inapplicable to clustering the data DK. We overcome this problem via whitening the data, so that for 

each eigenvector-direction, the mean value is 0, and the variance is 1. Without confusion, we also 

call the whitened data DK.

4. CLUSTERING METHODS

In terms of the SFM representations (SFM_H, SFM_V, SFM_HV, or principal component 

representation), each image is represented as a data point in the respective space. In general, we 

denote the dimensionality of the space as K. We cluster these data points using the following 

methods.  

4.1 Similarity Scores 

We use three similarity scores of data points. First, we consider the L1 similarity, or SL1, which 

is defined as the exponent of the negative L1 distance (thus the range is [0, 1]).  

Second, we consider the correlation coefficient similarity, SCC, of the L data points. The 

correlation coefficients are linearly normalized to the range [0, 1]. Different from SL1, SCC measures 

the "similarity" of the "variations" of data samples.  

Third, we combine both the L1 similarity and the correlation coefficient similarity, i.e. SL1+CC = 

0.5 (SL1 + SCC).

4.2 Spectral Clustering Method 

Recently the spectral clustering approach becomes popular [7][9][2]. This approach uses the 

top eigenvectors of the similarity matrix as the indicators of different clusters. Compared to other 

clustering approaches, it can generate globally more coherent clusters. In this paper, we use the 

MinMaxCut spectral clustering method [2]. MinMaxCut uses the second smallest eigenvector of 

the similarity matrix, called Fiedler vector, as the indicator of data bipartition. Multiple clusters are 

obtained by iteratively using the MinMaxCut. It has been proved that MinMaxCut favors balanced 

cut, so that the resultant clusters are likely to have comparable sizes. 

4.3 MST-Spectral Clustering Method 

One potential problem of spectral clustering is that since low similarity values tend to be 

noisy, a noise-removal method is usually needed to obtain reliable clusters. As an effort to improve 

the clustering method, we introduce the Maximal Spanning Tree (MST) into spectral clustering [6]. 

More specifically, instead of using spectral clustering directly on the similarity matrix, we first 

construct the MST from the similarity matrix and then use spectral clustering. Because MST 

typically preserves the cluster information of data (e.g. [14]), we expect this MST-spectral 

clustering approach would generate good clusters, given that the clusters do exist in the data. Since 

MST can be described as an extremely sparse matrix, an additional advantage of MST-spectral 
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clustering is that very large number of data points (and accordingly very large similarity matrix) 

can be handled more easily.  

To construct the MST from the similarity matrix, we treat each data point as a graph node. The 

similarity value of each pair of nodes is set as the weight of the respective edge between these 

nodes. We use the Prim's algorithm [1] to construct MST from the fully connected graph. Since the 

number of undirected edges is (L
2

L)/2, the MST construction has the complexity O((L
2

L)/2|lgL)

when the ordinary binary heap is used and can be reduced to O((L
2

L)/2+LlgL) when the Fibonacci 

heap [1] is used. The constructed MST is an undirected graph; the respective adjacency matrix, 

denoted as T, is symmetric.  

We add an L L identity matrix IL to T to generate a symmetric matrix S, i.e. S = T + IL, hence 

the self-similarity of every data point is the strongest. Because S is a symmetric real matrix, it has L

real eigenvalue-eigenvector pairs. This indicates spectral clustering can be applied to this MST-

based similarity matrix.  

We note that within the framework of MST-spectral clustering, other spectral clustering 

methods (e.g. normalized cut [9], etc) can be used as well. 

4.4 Clustering Results Evaluation Method 

The clustering results are evaluated using a score similar to the F-measure used in information 

retrieval [13]. Denote the image set of the ith cluster as Ci. Denote the ith ground truth image-

cluster as i (obtained by asking human subjects to categorize images into different categories). We 

calculate the proportion of images in the clustering results that are correctly put into the jth ground 

truth cluster, i.e., ij = |Ci j|/|Ci|. We also compute the proportion of mis-clustered images that 

should belong to the jth ground truth cluster ij = |Ci j|/| j|. The score to measure clustering 

quality of the ith category, still called F, is then defined as:

i
ijij

ijij

j

F max (4)

5. EXPERIMENTS 

As a preliminary study, we investigated our approach using a database of 724 images of 

natural scenes from University of Washington
*
. It includes (1) images of trees, flowers, and bushes 

in short distance, (2) city and campus sceneries in middle distance, and (3) lake, sea, grassland, and 

mountains in long distance. The task is to automatically categorize these images based on spatial 

frequency maps. 

For all images, we first generated the SFMs (T=30, R=22. See some examples in the second 

row of Figure 1). Then, both the project vector representations (Figure 2) and principal component 

representations (Figure 3) were produced.

In Figure 2, the horizontal, vertical, and the concatenated projection vectors are shown. It is 

obvious that the horizontal projection vectors of different images (i.e. the different rows in (a)) 

have rich differences in both mean values and variances, indicating both the L1 and correlation 

coefficient similarities should have discriminative strength in differentiating these images. In 

contrast, for the vertical projection vectors in (b), the mean values tend to be more distinctive than 

*
 http://www.cs.washington.edu/research/imagedatabase/groundtruth 

SPIE-IS&T/ Vol. 5307     217



the variances, suggesting that the correlation coefficient similarity would not have the same 

discriminative strength as the L1 similarity. The concatenated projection vectors in (c) combine 

both SFM_H and SFM_V. Visually, the SL1 and SCC similarity scores should have close 

discriminative strength.  (These observations will be verified in later part of this section).

(a) SFM_H (b) SFM_V (c) SFM_HV 

Figure 2. Projection vector representations of 724 natural scene images. For each plot, the rows correspond 

to the projection vectors of the images, and the columns correspond to the bins of projection. 

(a) Original data (b) Dimension-reduced data

Figure 3. Principal component representation of SFMs. The original data D (left-most) is represented as a 

724 660 array; lower-dimensional data DK are generated via principal component decomposition (an 

example of K=5 is shown). For the low-dimensional data, from-right-to-left the columns correspond to 

decreasing eigenvalues (e.g. the right most columns correspond to the largest eigenvalue). 

In Figure 3, we show an example of the principal component representations of SFMs. The 

dimensionality of input SFM data is 660 (=30 22), as shown in (a). It is apparent different images 

have different scales, indicating that for this original SFM data, L1 similarity would have more 

discriminative power than the correlation coefficient similarity. Because this is little visual 

variation among columns of (a), we can use the principal components to reduce the dimensionality. 

In (b), we show the decomposition using the five top (largest) eigenvectors. The new data DK (K=5) 

have different variances along different eigenvector directions. After data whitening, the variances 

are comparable, and presumably the data DK can be more effectively clustered. 
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For simplicity, in the following we use S660 to denote the similarity matrixes using the original 

660-dimensional SFM data, and S5 for the 5-dimensional principal component representations. 

They were calculated using three similarity scores, SL1, SCC, or SL1+CC. In Figure 4, we show the 

similarity matrix using SCC. It can be seen that after dimension-reduction, the contrast of similarity 

/dissimilarity of images are clearer.  

The image clustering can be understood as reordering the rows/columns in the similarity 

matrix so that similar images are grouped together and dissimilar images are separated. 

Accordingly, if a cluster of images is coherent, the pair-wise similarity value will be large; if two 

clusters are distinctive, their mutual similarity values will be low. In terms of the similarity matrix, 

good clustering results mean that the respective diagonal sub-matrix of a coherent cluster has large 

similarity values (most red-colored), and the off-diagonal sub-matrix will have small similarity 

values (most blue-colored).  

(a) S660 (b) S5

Figure 4. The correlation coefficient similarity matrixes of the SFMs and the dimension-reduced data. Red 

color means higher similarity, and blue color means lower similarity. 

Spectral clustered MST-spectral clustered

Input S
Reordered S

In-cluster portion 

of the reordered S
Reordered S

In-cluster portion 

of the reordered S

S660

S5

Figure 5. Illustration of clustering schemes for similarity matrixes in Figure 5. The 3 major clusters were 

obtained using the MinMaxCut spectral clustering. Compared to the spectral-clustering, MST-spectral 

clustering generates more coherent clusters, so that the diagonal sub-matrixes are more densely red-colored, 

and the off-diagonal sub-matrixes are more densely blue-colored.  
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(a) Examples of the first image-cluster, corresponding to short-distance scenes

(b) Examples of the second image-cluster, corresponding to middle-distance scenes

(c) Examples of the third image-cluster, corresponding to long-distance scenes 

Figure 6. An example of clustering results. 5-dimensional PCA representations of SFM and the MST-spectral 

clustering are used. The target number of clusters is set to be 3. 

Figure 5 shows a clustering example using the SCC similarity matrix. In the reordered 

similarity matrixes and the respective in-cluster portions, the clustering results of S5 are better than 

those of S660. This suggests that dimension-reduction plays a very useful role. Figure 5 also 

indicates that the clusters produced by MST-spectral clustering method (for SCC of S5) are coherent.

In Figure 6, we show example images of the detected clusters. The results show that in the 

first category (see (a)), most images are highly textured; they belong to close-viewed scenes. In the 

second category (see (b)), most images contain both objects in short distance (such as trees and 

buildings close to the camera) and long distance (such as the sky). Thus, some areas (usually in the 

upper part of the image) in the images are quite smooth, whereas others (usually in the middle or 
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lower part of the image) are highly textured. In the third category (see (c)), most images contain 

horizontally distributed smooth areas and are images of long distance scenes. This example 

indicates that SFM does capture the distribution of the spatial frequency of different areas in an 

image, thus reflecting different spatial layout and depth of the scene. 

Table 1. F-measures for clustering projection vector representations. 

SFM_H SFM_V SFM_HV 

Similarity 
Spectral

MST- 

spectral
Spectral

MST- 

spectral
Spectral

MST- 

spectral 

SL1 0.5550 0.5368 0.5730 0.5620 0.5548 0.5584 

SCC 0.5234 0.4095 0.4436 0.4307 0.5235 0.5104 

SL1+CC 0.5454 0.5365 0.5015 0.4874 0.5398 0.5411 

Table 2. F-measures for clustering PCA representations. 

S660 S5

Similarity 
Spectral

MST-

spectral
Spectral

MST-

spectral

SL1 0.5591 0.5486 0.5406 0.5423 

SCC 0.4823 0.4747 0.5062 0.5491 

SL1+CC 0.5412 0.5499 0.5392 0.5404 

We then systematically compared different feature representations, similarity scores, and 

clustering schemes using the ground truth clusters determined by human-subjects. Table 1 shows 

the results of clustering projection vector representations. The F-measure was used: the larger the 

score, the better the consistency between the clustering results and the ground truth clusters. We 

have the following observations. (1) For horizontal projection vectors (SFM_H), SL1, SCC, and 

SL1+CC have comparable discriminative strength. (2) For the vertical projection vectors (SFM_V), 

SL1 is much more discriminative than SCC. (3) It is a safe choice to combine both horizontal and 

vertical projections as SFM_HV. The respective F-measures are good for all the three similarity 

scores. (4) MST-spectral clustering and the spectral-clustering have comparable performances for 

the projection vector representations. We note that the results in Table 1 are consistent with our 

observations of Figure 2. 

Table 2 compares the clustering results of principal component representations. (1) For both 

the original SFM data S660 and the 5-dimensional data S5, the L1 similarity is much more 

discriminative than the correlation coefficient similarity (e.g. the F-measure is 0.55 versus 0.48 for 

S660). This is consistent with our observation on Figure 3. (2) MST-spectral clustering is (slightly) 

better than the spectral clustering for S5. (3) The combination of L1 and correlation coefficient 

similarities is a safe choice for good clustering results.  

The overall results of Tables 1 and 2 suggest that for various feature representations and 

clustering schemes, the L1 similarity of SFMs is good in discriminating different images. The F-

measure is always larger than 0.54.  

To investigate how good these clustering results are, we generated 3 random clusters (but with 

approximately the same numbers of images in each cluster). The average F-measure of 10 trials is 

0.38. Because 0.54 is significantly larger than 0.38, we have confidence that the SFM does play a 

positive role in discriminating the scene images in our experiments.  
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